a2 United States Patent

Ananthapadmanabha et al.

US009450870B2

US 9,450,870 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

SYSTEM AND METHOD FOR FLOW
MANAGEMENT IN SOFTWARE-DEFINED
NETWORKS

Applicant: BROCADE COMMUNICATIONS

SYSTEMS, INC., San Jose, CA (US)
Inventors: Kashyap Tavarekere
Ananthapadmanabha, San Jose, CA
(US); Vivek Agarwal, San Jose, CA
(US); Eswara S. P. Chinthalapati, San
Jose, CA (US)

BROCADE COMMUNICATIONS
SYSTEMS, INC., San Jose, CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 203 days.

Appl. No.: 13/669,313
Filed: Nov. 5, 2012

Prior Publication Data

US 2013/0124707 Al May 16, 2013

Related U.S. Application Data

Provisional application No. 61/558,332, filed on Nov.
10, 2011.

Int. CL.

GO6F 15/173 (2006.01)

HO4L 12/743 (2013.01)

HO4L 12/701 (2013.01)

HO4L 12/851 (2013.01)

(Continued)
U.S. CL
CPC ... HO4L 45/7457 (2013.01); HO4L 45/00

(2013.01); HO4L 47/2441 (2013.01); HO4L
49/3009 (2013.01); HO4L 61/103 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 45/38; HO4L 47/2441; HOA4L 45/00;
HO04L 61/103
USPC ottt 709/223
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,390,173 A 2/1995 Spinney
5,802,278 A 9/1998 Isfeld
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102801599 A 11/2012
EP 0579567 5/1993
(Continued)

OTHER PUBLICATIONS

Tanyingyong, Voravit et al., “Using Hardware Classification to
Improve PC-Based OpenFlow Switching”, 2011 IEEE 12th Inter-
national Conference on High Performance Switching and Routing,
pp. 215-221.

(Continued)

Primary Examiner — Yves Dalencourt
(74) Attorney, Agent, or Firm — Shun Yao; Park, Vaughan,
Fleming & Dowler LLP

(57) ABSTRACT

A system facilitates flow definition management in a switch.
During operation, the system identifies a generic flow defi-
nition which specifies a flow that is not specific to any input
port of a switch. The system further stores in a flow lookup
data structure one or more port-specific flow rules based on
the generic flow definition, wherein each port-specific flow
rule corresponds to a respective port capable of processing
data flows.

20 Claims, 9 Drawing Sheets

SWITCH 700

[~ FLOW TABLE
MANAGEMENT
MODULE

N
w

STORAGE
750

N

FLOW DEFINITION
MANAGEMENT
MODULE
730

ASSOCIATION
MODULE
732

\. /

PER-PORT CHAIN
MANAGEMENT
MODULE
740

FLOW IDENTIFIER
MODULE
720

PACKET
PROCESSOR
710

COMMUNICATION PORTS 702

US 9,450,870 B2

Page 2
(51) Int.CL 8,125,928 B2 2/2012 Mehta
8,134,922 B2 3/2012 Elangovan
HO4L 25/12 (2006.01) 8,155,150 Bl 4/2012 Chufg
HO4L 12/935 (2013.01) 8,160,063 B2 4/2012 Maltz
8,160,080 Bl 4/2012 Arad
(56) References Cited 8,170,038 B2 5/2012 Belanger
8,194,674 Bl 6/2012 Pagel
U.S. PATENT DOCUMENTS 8,195,774 B2 6/2012 Lambeth
8,204,061 Bl 6/2012 Sane
5878232 A 3/1999 Marimuthu 8213313 Bl 72012 Doiron
5,959,968 A 9/1999 Chin 8,213,336 B2 7/2012 Smith
5,973,278 A 10/1999 Webrill, III 8,230,069 B2 7/2012 Korupolu
5,983,278 A 11/1999 Chong 8,239,960 B2 8/2012 Frattura
6,041,042 A 3/2000 Bussicre 8,249,069 B2 82012 Raman
6,085,238 A 7/2000 Yuasa 8,270,401 B1 9/2012 Barnes
6,104,696 A 8/2000 Kadambi 8,295,291 B1 10/2012 Ramanathan
6,185214 Bl 2/2001 Schwartz 8,205921 B2 10/2012 Wang
6,185,241 Bl 2/2001 Sun 8,301,686 Bl 10/2012 Appajodu
6.438.106 Bl 8/2002 Pillar 8,339,994 B2 12/2012 Gnanasekaran
6498781 Bl 12/2002 Bass 8,351,352 Bl 1/2013 Eastlake
6,542,266 B1 4/2003 Phillips 8,369,335 B2 22013 Jha
6,633,761 Bl 10/2003 Singhal 8,369,347 B2 2/2013 Xiong
6.771.610 Bl 8/2004 Seaman 8,392,496 B2 3/2013 Linden
6,873,602 Bl 3/2005 Ambe 8462,774 B2 6/2013 Page
6,937,576 Bl 8/2005 DiBenedetto 8,467,375 B2 62013 Blair
6,956,824 B2 10/2005 Mark 8,520,595 B2 8/2013 Yadav
6,957,269 B2 10/2005 Williams 8,599,850 B2 122013 Jha
6,975,581 Bl 12/2005 Medina 8,599,864 B2 12/2013 Chung
6,975,864 B2 12/2005 Singhal 8,615,008 B2 12/2013 Natarajan]
7,016,352 Bl 3/2006 Chow 8,706,905 Bl 4/2014 McGlaughlin
7,061,877 Bl 6/2006 Gummalla 8,724,456 B1 ~ 5/2014 Hong
7,173,934 B2 2/2007 Lapuh 8,806,031 Bl 8/2014 Kondur
7,197,308 B2 3/2007 Singhal 8,826,385 B2 ~ 972014 Congdon
7,206,288 B2 4/2007 Cometto 8,830,841 B1* 9/2014 Mizrahi et al. 370/241.1
7,310,664 Bl 12/2007 Merchant 8,937,865 Bl 122015 Kumar
7313.637 B2 12/2007 Tanaka 2001/0005527 Al 6/2001 Vaeth
7315545 Bl 1/2008 Chowdhury et al. 2001/0055274 AL 12/2001 Hegge
7316031 B2 1/2008 Griffith 2002/0019904 Al 2/2002 Katz
7.330.897 B2 2/2008 Baldwin 2002/0021701 Al 2/2002 Lavian
7380025 BI 52008 Riggins 2002/0039350 Al 4/2002 Wang
7307704 Bl 72008 Lacroute 2002/0054593 Al 5/2002 Morohashi
7230164 B2 9/2008 Bare 2002/0091795 Al 7/2002 Yip
7,453’888 B2 11/2008 Zabihi 2003/0041085 Al 2/2003 Sato
7477.894 Bl 1/2009 Sinha 2003/0123393 Al 7/2003 Feuerstraeter
7480258 Bl 1/2009 Shuen 2003/0174706 Al 9/2003 Shankar
7508757 B2 32009 Ge 2003/0189905 Al 10/2003 Lee
7558195 BL 72009 Kuo 2003/0216143 Al 11/2003 Roese
7558973 Bl 7/2009 Grosser 2004/0001433 Al 1/2004 Gram
75571447 B2 82000 Ally 2004/0003094 Al 1/2004 See
7’599’901 B2 10/2009 Mital 2004/0010600 Al 1/2004 Ba_ldwm
7638736 Bl 3/2010 Walsh 2004/0049699 Al 3/2004 Griffith
7688.960 Bl 3/2010 Aubuchon 2004/0057430 Al 3/2004 Paavolainen
7690040 B2 3/2010 Frattura 2004/0117508 Al 6/2004 Shimizu
7,706,255 Bl 4/2010 Kondrat et al. 2004/0120326 Al 6/2004 Yoon
7,716,370 Bl 5/2010 Devarapalli 2004/0153570 Al* 82004 Shobatakeccc........ 709/238
7.720.076 B2 5/2010 Dobbins 2004/0156313 Al 8/2004 Hofmeister et al.
7729296 BI 62010 Choudhary 2004/0165595 Al 8/2004 Holmgren
7787480 Bl 82010 Mehta 2004/0165596 Al 82004 Garcia
7792920 B2 9/2010 Istvan 2004/0213232 Al 10/2004 Regan
7,808,992 B2 10/2010 Homchaudhuri 2005/0044199 Al 2/2005 Shiga
7836332 B2 11/2010 Hara 2005/0074001 Al 4/2005 Mattes
7.843.906 Bl 112010 Chidambaram et al. 2005/0094568 AL 52005 Judd
7.843.907 B1 11/2010 Abou-Emara 2005/0094630 Al 5/2005 Valdevit
7'%60.097 Bl 12/2010 Lovett 2005/0122979 Al 6/2005 Gross
7908050 Bl 32011 Arad 2005/0157645 Al 7/2005 Rabie et al.
7’924,837 Bl 4/2011 Shabtay 2005/0157751 Al 7/2005 Rabie
7037756 B2 52011 Kay 2005/0169188 Al 82005 Cometto
7045941 B2 57011 Sinha 2005/0195813 Al 9/2005 Ambe
7.049.638 Bl 5/2011 Goodson 2005/0207423 Al 9/2005 Herbst
7.057386 Bl 6/2011 Aggarwal 2005/0213561 Al 9/2005 Yao
8018938 Bl 9/2011 Fromm 2005/0220096 Al 10/2005 Friskney
8,027354 Bl 9/2011 Portolani 2005/0265356 Al 12/2005 Kawarai
8,054,832 Bl 11/2011 Shukla 2005/0278565 Al 12/2005 Frattura
8,068,442 Bl 11/2011 Kompella 2006/0007869 Al 1/2006 Hirota
8,078,704 B2 12/2011 Lee 2006/0018302 Al 1/2006 Ivaldi
8,102,781 B2 1/2012 Smith 2006/0023707 Al 2/2006 Makishima
8,102,791 B2 1/2012 Tang 2006/0034292 Al 2/2006 Wakayama
8,116,307 Bl 2/2012 Thesayi 2006/0059163 Al 3/2006 Frattura

US 9,450,870 B2

Page 3

(56) References Cited 2009/0168647 Al 7/2009 Holness

2009/0199177 Al 82009 Edwards

U.S. PATENT DOCUMENTS 2009/0204965 Al /2009 Tanaka

2009/0213783 Al /2009 Moreton
2006/0062187 Al 3/2006 Rune 2009/0222879 Al 9/2009 Kostal
2006/0072550 Al 4/2006 Davis 2009/0232031 Al 9/2009 Vasseur
2006/0083254 Al 4/2006 Ge 2009/0245137 Al 10/2009 Hares
2006/0093254 Al 5/2006 Mozdy 2009/0245242 Al 10/2009 Carlson
2006/0098589 Al 5/2006 Kreeger 2009/0246137 Al 10/2009 Hadida Ruah et al.
2006/0140130 Al 6/2006 Kalkunte 2009/0252049 Al 10/2009 Ludwig
2006/0168109 Al 7/2006 Warmenhoven 2009/0252061 Al 10/2009 Small
2006/0184937 Al 8/2006 Abels 2009/0260083 Al 10/2009 Szeto
2006/0221960 Al 10/2006 Borgione 2009/0279558 Al 1172009 Davis
2006/0235995 Al 10/2006 Bhatia 2009/0292858 Al 11/2009 Lambeth
2006/0242311 Al 10/2006 Mai 2009/0316721 Al 12/2009 Kanda
2006/0245439 Al 11/2006 Sajassi 2009/0323708 Al 12/2009 Thle
2006/0251067 Al 11/2006 DeSanti 2009/0327392 Al 12/2009 Tripathi
2006/0256767 Al 11/2006 Suzuki 2009/0327462 Al 12/2009 Adams
2006/0265515 Al 11/2006 Shiga 2010/0027420 Al 2/2010 Smith
2006/0285499 Al 12/2006 Tzeng 2010/0046471 Al 2/2010 Hattori
2006/0291388 Al 12/2006 Amdahl 2010/0054260 Al 3/2010 Pandey
2007/0036178 Al 2/2007 Hares 2010/0061269 Al 3/2010 Banerjee
2007/0083625 Al 4/2007 Chamdani 2010/0074175 Al 3/2010 Banks
2007/0086362 Al 4/2007 Kato 2010/0097941 Al 4/2010 Carlson
2007/0094464 Al 4/2007 Sharma 2010/0103813 Al 4/2010 Allan
2007/0097968 Al 5/2007 Du 2010/0103939 Al 4/2010 Carlson
2007/0098006 Al 5/2007 Parry 2010/0131636 Al 5/2010 Suri
2007/0116224 Al 5/2007 Burke 2010/0158024 Al 6/2010 Sajassi
2007/0116422 Al 5/2007 Reynolds 2010/0165877 Al 7/2010 Shukla
2007/0156659 Al 7/2007 Lim 2010/0165995 Al 7/2010 Mehta
2007/0177525 Al 8/2007 Wijnands 2010/0168467 Al 7/2010 Johnston
2007/0177597 Al 8/2007 Ju 2010/0169467 Al 7/2010 Shukla
2007/0183313 Al 82007 Narayanan 2010/0169948 Al 7/2010 Budko
2007/0211712 Al 9/2007 Fitch 2010/0182920 Al 7/2010 Matsuoka
2007/0258449 Al 11/2007 Bennett 2010/0215049 Al 82010 Raza
2007/0274234 Al 11/2007 Kubota 2010/0220724 Al 9/2010 Rabie
2007/0289017 Al 12/2007 Copeland, III 2010/0226368 Al 9/2010 Mack-Crane
2008/0052487 Al 2/2008 Akahane 2010/0226381 Al 9/2010 Mehta
2008/0065760 Al 3/2008 Damm 2010/0246388 Al 9/2010 Gupta
2008/0080517 Al 4/2008 Roy 2010/0257263 Al 10/2010 Casado
2008/0095160 Al 4/2008 Yadav 2010/0271960 Al 10/2010 Krygowski
2008/0101386 Al 5/2008 Gray 2010/0272107 Al 10/2010 Papp i
2008/0112400 Al 5/2008 Dunbar et al. 2010/0281106 Al 11/2010 Ashwood-Smith
2008/0133760 Al 6/2008 Berkvens 2010/0284414 Al 11/2010 Agarwal
2008/0159277 Al 7/2008 Vobbilisetty 2010/0284418 Al 11/2010 Gray
2008/0172492 Al 7/2008 Raghunath 2010/0287262 Al 11/2010 Elzur
2008/0181196 Al 7/2008 Regan 2010/0287548 Al 11/2010 Zhou_
2008/0181243 Al 7/2008 Vobbilisetty 2010/0290473 Al 11/2010 Enduri
2008/0186981 Al 8/2008 Seto 2010/0299527 Al 11/2010 Arunan
2008/0205377 Al 8/2008 Chao 2010/0303071 Al 12/2010 Kotalwar
2008/0219172 Al 9/2008 Mohan 2010/0303075 Al 12/2010 Tripathi
2008/0225852 Al 9/2008 Raszuk 2010/0303083 Al 12/2010 Belanger
2008/0225853 Al 9/2008 Melman 2010/0309820 Al 12/2010 Rajagopalan
2008/0228897 Al 9/2008 Ko 2010/0309912 A1 12/2010 Mehta
2008/0240129 Al 10/2008 Elmeleegy 2010/0329110 Al 12/2010 Rose
2008/0267179 Al 10/2008 LaVigne 2011/0019678 Al 1/2011 Mehta
2008/0285458 Al 11/2008 Lysne 2011/0032945 A1 2/2011 Mullooly
2008/0285555 Al 11/2008 Ogasahara 2011/0035480 Al 2/2011 McDaniel
2008/0298248 Al 12/2008 Roeck 2011/0035498 Al 2/2011 Shah
2008/0304498 Al 12/2008 Jorgensen 2011/0044339 AL 2/2011 Kotalwar
2008/0310342 A1 12/2008 Kruys 2011/0044352 Al 2/2011 Chaitou
2009/0022069 Al 1/2009 Khan 2011/0055274 Al 3/2011 Scales et al.
2009/0037607 Al 2/2009 Farinacci 2011/0064086 Al 3/2011 Xiong
2009/0042270 Al 2/2009 Dolly 2011/0064089 AL 3/2011 Hidaka
2009/0044270 Al 2/2009 Shelly 2011/0072208 Al 3/2011 Gulati
2009/0067422 Al 3/2009 Poppe 2011/0085560 Al 4/2011 Chawla
2009/0067442 Al 3/2009 Killian 2011/0085563 Al 4/2011 Kotha
2009/0079560 Al 3/2009 Fries 2011/0110266 Al 52011 Li
2009/0080345 Al 3/2009 Gray 2011/0134802 Al 6/2011 Rajagopalan
2009/0083445 Al 3/2009 Ganga 2011/0134803 Al 6/2011 Dalvi
2009/0092042 Al 4/2009 Yuhara 2011/0134925 Al 6/2011 Safrai
2009/0092043 Al 4/2009 Lapuh 2011/0142053 Al 6/2011 VanDerMerwe
2009/0106405 Al 4/2009 Mazarick 2011/0142062 Al 6/2011 Wang
2009/0116381 Al 5/2009 Kanda 2011/0161494 Al 6/2011 McDysan
2009/0129384 Al 5/2009 Regan 2011/0161695 Al 6/2011 Okita
2009/0138577 Al 5/2009 Casado 2011/0188373 Al* 8/2011 SAit0 ..oovvvvveeeerririveennn: 370/230
2009/0138752 Al 5/2009 Graham 2011/0194403 Al 82011 Sajassi
2009/0161584 Al 6/2009 Guan 2011/0194563 Al 82011 Shen
2009/0161670 Al 6/2009 Shepherd 2011/0228780 Al 9/2011 Ashwood-Smith

US 9,450,870 B2

Page 4
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS EP 1398920 A2 3/2004
EP 1916807 A2 4/2008
2011/0231570 Al 9/2011 Altekar EP 2001167 Al 10/2008
2011/0231574 Al 9/2011 Saunderson woO 2008056838 5/2008
2011/0235523 Al 9/2011 Jha WO 2009042919 4/2009
2011/0243133 A9 10/2011 Villait WO 2010111142 Al 9/2010
2011/0243136 Al 10/2011 Raman WO 2014031781 2/2014
2011/0246669 Al 10/2011 Kanada
2011/0255538 Al 10/2011 Srinivasan OTHER PUBLICATIONS
2011/0255540 Al 10/2011 Mizrahi
2011/0261828 Al 10/2011 Smith Naous, Jad et al., “Implementing an OpenFlow Switch on the
2011/0268120 A1 11/2011 Vobb@l@setty NetFPGA platform”, Nov. 2008.
2011/0268125 Al 11/2011 Vobbilisetty Mogul, Jeffrey C. et al., “DevoFlow: Cost-Effective Flow Manage-
2011/0273988 Al 11/2011 Tourrilhes . . M
5011/0274114 Al 112011 Dhar ment for High Performance Enterprise Networks”, Oct. 2010.
2011/0280572 Al 11/2011 Vobbilisetty Yu, Minian et al., “Scalable Flow-Based NetWOI‘kiIlg with
2011/0286457 Al 11/2011 Ee DIFANE”, Sep. 2010.
2011/0296052 Al 12/2011 Guo Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24,
2011/0299391 Al 12/2011 Vobbilisetty 2009, pp. 1-17, TRILL Working Group.
2011/0299413 Al 12/2011 Chatwani Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working
2011/0299414 A1 12/2011 Yu Group, Dec. 4, 2009, pp. 1-12.
2011/0299527 Al 12/2011 Yu . . .
2011/0299528 Al 122011 Yu Touch, J. et al., ‘Transparent Interconnection of Lots of Links
2011/0299531 Al 12/2011 Yu (TRILL): Problem and Applicability Statement’, May 2009, Net-
2011/0299532 A1 12/2011 Yu work Working Group, pp. 1-17.
2011/0299533 Al 12/2011 Yu] Switched Virtual Networks. ‘Internetworking Moves Beyond
2011/0299534 Al 12/2011 Koganti Bridges and Routers” Data Communications, McGraw Hill. New
ggﬁfggggggg 2} }%8}} é’%bblhsefty York, US, vol. 23, No. 12, Sep. 1, 1994, pp. 66-70,72,74,
2011/0317559 Al 12/2011 Kefrrllg XP.OOO462385 ISSN.: 0363-6399.
2011/0317703 Al 12/2011 Dunbar et al. Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet
2012/0011240 Al 1/2012 Hara Citation Apr. 1, 1998, XP002135272 Retrieved from the Internet:
2012/0014261 Al 1/2012 Salam URL.:ftp://ftp.isi.edw/in-notes/rfc2338.txt [retrieved on Apr. 10,
2012/0014387 Al 1/2012 Dunbar 2000].
2012/0020220 Al 1/2012 Sugita Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed
2012/0027017 Al 2/2012 Rai May 2, 2011
2012/0033663 Al 2/2012 Guichard ’ y L .
. Perlman R: ‘Challenges and opportunities in the design of TRILL:
2012/0033665 Al 2/2012 Jacob Da Silva et al. N
5012/0033669 Al 3/2012 Mohandas a routed layer 2 technology’, 2009 IEEE GLOBECOM Workshops,
2012/0075991 Al 3/2012 Sugita Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009, pp. 1-6,
2012/0099567 Al 4/2012 Hart XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN:
2012/0099602 Al 4/2012 Nagapudi 1-4244-5626-0 [retrieved on Jul. 19, 2011].
2012/0106339 Al 5/2012 Mishra TRILL Working Group Internet-Draft Intended status: Proposed
2012/0131097 Al 5/2012 Baykal Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
2012/0131289 Al 5/2012 Taguchi Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed
2012/0147740 Al 6/2012 Nakash Mar. 15, 2011.
2012/0158997 Al 6/2012 Hsu Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy,
2012/0163164 Al 6/2012 Terry Technology, and Standardization Efforts’, IEEE Communications
2012/0177039 Al 7/2012° Berman Magazine, IEEE Service Center, Piscataway, US, vol. 42, No. 6,
2012/0243539 Al 9/2012 Keesara
. Jun. 1, 2004, pp. 124-131, XP001198207, ISSN: 0163-6804, DOI:
2012/0275347 Al 11/2012 Banerjee 10, 1109/MCOM.2004. 1304248
2012/0294192 Al 11/2012 Masood : .) ' ’
2012/0294194 Al 11/2012 Balasubramanian Office Action for U.S. Appl No. 13/092,873, filed Apr 22, 2011,
2012/0320800 Al 12/2012 Kamble dated Nov. 29, 2013.
2012/0320926 Al 12/2012 Kamath et al. Perlman, Radia et al., ‘RBridges: Base Protocol Specification;
2012/0327766 Al 12/2012 Tsai et al. Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117.
2012/0327937 Al 12/2012 Melman et al. ‘An Introduction to Brocade VCS Fabric Technology’, Brocade
2013/0003535 Al 1/2013 Sarwar white paper, http://community.brocade.com/docs/DOC-2954, Dec.
2013/0003737 Al 1/2013 Sinicrope 3, 2012.
2013/0003738 Al 1/2013 Kogantl_ Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature
2013/0028072 Al 1/2013 A(_idankl Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communica-
2013/0034015 Al 2/2013 Jaiswal i
ions Systems, Inc.
2013/0067466 Al 3/2013 Combs . . L
2013/0070762 Al 32013 Adams Brocade, ‘FastIron and Turbolron 24x Configuration Guide’, Feb.
2013/0114595 Al 5/2013 Mack-Crane et al. 16, 2010.
2013/0127848 Al 5/2013 Joshi Brocade, ‘The Effortless Network: Hyperedge Technology for the
2013/0194914 Al 8/2013 Agarwal Campus LAN" 2012.
2013/0219473 Al 8/2013 Schaefer Brocade ‘Brocade Unveils” The Effortless Network, http://news-
2013/0230047 Al 9/2013 Subrahmaniam et al. ... 370/392 room.brocade.com/press-releases/brocade-unveils-the-effortless-
2013/0250951 Al 9/2013 Koganti network-nasdaq-bred-0859535, 2012.
2013/0259037 Al 10/2013 Natarajan Christensen, M. et al., ‘Considerations for Internet Group Manage-
2013/0272135 Al 10/2013 Leong ment Protocol (IGMP) and Multicast Listener Discovery (MLD)
2013/0301642 Al 11/2013 Radhakrishnan Snooping Switches’, May 2006.
2014/0044126 Al 2/2014 Sabhanatarajan Fastlron Configuration Guide Supporting Ironware Software
2014/0105034 Al 4/2014 Sun Release 07.0.00, Dec. 18, 2009.

US 9,450,870 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Foundary Fastlron Configuration Guide, Software Release FSX
04.2.00b, Software Release FWS 04.3.00, Software Release FGS
05.0.00a, Sep. 2008.

Knight, ‘Network Based IP VPN Architecture using Virtual Rout-
ers’, May 2003.

Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol
Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-
lapuh-network-smlt-08, Jul. 2008.

Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network
Working Group, Oct. 2012.

Louati, Wajdi et al., ‘Network-based virtual personal overlay net-
works using programmable virtual routers’, IEEE Communications
Magazine, Jul. 2005.

Narten, T. et al., ‘Problem Statement: Overlays for Network
Virtualization d raft-nar ten-n vo3-over 1 ay-problem -statement-
01°, Oct. 31, 2011.

Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011,
from Park, Jung H., dated Jul. 18, 2013.

Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012,
dated Jul. 24, 2014.

Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012,
from Cho, Hong Sol., dated Jul. 23, 2013.

Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014,
filed Jan. 15, 2013.

Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010
dated Apr. 26, 2013.

Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010,
dated Jan. 4, 2013.

Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010,
dated Jun. 7, 2012.

Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010,
dated Dec. 20, 2012.

Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010,
dated May 24, 2012.

Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011,
dated Apr. 25, 2013.

Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011,
dated Dec. 3, 2012.

Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011,
dated Jun. 11, 2013.

Office Action for U.S. Appl. No.
dated Mar. 18, 2013.

Office Action for U.S. Appl. No.
dated Jul. 31, 2013.

Office Action for U.S. Appl. No.
dated Feb. 22, 2013.

Office Action for U.S. Appl. No.
dated Jun. 11, 2013.

Office Action for U.S. Appl. No.
dated Oct. 2, 2013.

Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011,
dated Oct. 26, 2012.

Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011,
dated May 16, 2013.

Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011,
dated May 22, 2013.

Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011,
dated Jun. 21, 2013.

Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011,
dated Jun. 10, 2013.

Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011,
dated Jan. 28, 2013.

Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011,
dated Jul. 3, 2013.

Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011,
dated Feb. 5, 2013.

Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011,
dated Jul. 16, 2013.

13/042,259, filed Mar. 7, 2011,

[}

13/042,259, filed Mar. 7, 2011,

[}

[}

13/044,301, filed Mar. 9, 2011,

13/044,301, filed Mar. 9, 2011,

[}

13/044,326, filed Mar. 9, 2011,

[}

Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011,
dated Feb. 5, 2013.

Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011,
dated Sep. 19, 2012.

Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011,
dated Jun. 19, 2013.

Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011,
dated Mar. 4, 2013.

Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011,
dated Sep. 5, 2013.

Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011,
dated May 31, 2013.

Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011,
dated Jul. 9, 2013.

Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011,
dated Jan. 28, 2013.

Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011,
dated May 22, 2013.

Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013,
dated Jul. 18, 2013.

Perlman, Radia et al., ‘Challenges and Opportunities in the Design
of TRILL: a Routed layer 2 Technology’, 2009.

S. Nadas et al,, ‘Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar.
2010.

‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al.,
Jun. 26, 2009.

U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed
Mar. 16, 2010.

Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed
Mar. 16, 2010.

Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed
May 2, 2011.

Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed
May 2, 2011.

Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed
May 2, 2011.

Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed
Apr. 14, 2011.

Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed
Apr. 14, 2011.

Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed
Apr. 22, 2011.

Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed
Apr. 22, 2011.

Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed
Apr. 22, 2011.

Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed
Apr. 22, 2011.

Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed
Mar. 7, 2011.

Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed
Mar. 7, 2011.

Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed
Mar. 7, 2011.

Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed
Mar. 7, 2011.

Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed
Apr. 22, 2011.

Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed
Apr. 22, 2011.

Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed
Apr. 22, 2011.

Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed
Apr. 22, 2011.

Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed
Apr. 22, 2011.

Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed
Apr. 22, 2011.

Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed
Apr. 22, 2011.

US 9,450,870 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Office action dated Jul. 18, 2013, U.S. Appl. No.

Apr. 22, 2011.

Office action dated Dec. 20, 2012, U.S. Appl. No.

Nov. 19, 2010.

Office action dated May 24, 2012, U.S. Appl. No.

Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No.
Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No.
Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No.
Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No.
Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. No.
Nov. 19, 2010.

Office action dated Sep. 19, 2012, U.S. Appl. No.

Apr. 22, 2011.

Office action dated May 31, 2013, U.S. Appl. No.

Apr. 29, 2011.

Office action dated Jul. 7, 2014, for U.S. Appl. No.

Mar. 9, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No.
Mar. 9, 2011.

13/092,752, filed
12/950,974, filed
12/950,974, filed
13/092,877, filed
13/092,877, filed
13/092,877, filed
12/950,968, filed
12/950,968, filed
13/092,864, filed
13/098,360, filed
13/044,326, filed

13/044,326, filed

Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326,

filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No.
Feb. 18, 2011.

Office action dated Apr. 22, 2014, U.S. Appl. No.

Feb. 18, 2011.

Office action dated Jun. 11, 2013, U.S. Appl. No.

Feb. 18, 2011.

Office action dated Apr. 25, 2013, U.S. Appl. No.

Feb. 18, 2011.

13/030,806, filed
13/030,806, filed
13/030,806, filed

13/030,688, filed

Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed
May 30, 2012.

Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed
Jun. 26, 2012.

Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed
Aug. 29, 2012.

Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed
Nov. 5, 2012.

Brocade ‘An Introduction to Brocade VCS Fabric Technology’,
Dec. 3, 2012.

Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a
Bridged LAN’, Mar. 16, 1992.

Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-
network-smlt-08’, Jan. 2009.

Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus
Networks”, Mar. 14, 2008, www.openflow.org/documents/
openflow-wp-latest.pdf.

Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011,
dated Jul. 17, 2014.

Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011,
from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.

Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011,
dated Jul. 7, 2014.

Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011,
dated Apr. 9, 2014.

Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011,
dated Jul. 25, 2014.

Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011,
dated Jun. 20, 2014.

Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011,
dated Aug. 7, 2014.

Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012,
dated Mar. 6, 2014.

Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012,
dated Jun. 6, 2014.

Office Action for U.S. Appl. No.
from Haile, Awet A., dated Dec.
Office Action for U.S. Appl. No.

13/950,974, filed Nov. 19, 2010,
2,2012.
12/725,249, filed Mar. 16, 2010,

Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed
Mar. 9, 2011.

Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed
Mar. 9, 2011.

Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed
Mar. 17, 2011.

Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed
Mar. 17, 2011.

Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed
Mar. 17, 2011.

Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed
Jul. 16, 2011.

Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed
Jul. 16, 2011.

Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed
Jul. 16, 2011.

Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed
Jul. 16, 2011.

Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed
Apr. 22, 2011.

Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed
Apr. 22, 2011.

Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed
Feb. 3, 2012.

Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed
Mar. 20, 2012.

Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed
Dec. 6, 2011.

Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed
Dec. 6, 2011.

Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed
Apr. 5, 2012.

Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed
Jan. 17, 2012.

dated Sep. 12, 2012.

Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011,
dated Dec. 21, 2012.

Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011,
dated Mar. 27, 2014.

Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011,
dated Jun. 13, 2013.

Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011,
dated Dec. 5, 2012.

Office Action for U.S. Appl. No.
dated Nov. 7, 2014.

Office Action for U.S. Appl. No.
dated Nov. 10, 2014.

Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.

Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011,
dated Jan. 5, 2015.

Office Action for U.S. Appl. No.
dated Dec. 2, 2013.

Office Action for U.S. Appl. No.
dated Feb. 28, 2014.

Office Action for U.S. Appl. No.
dated Oct. 21, 2013.

Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012,
dated Jan. 5, 2015.

Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012,
dated Feb. 20, 2014.

Office Action for U.S. Appl. No.
dated Jan. 30, 2015.

Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013,
dated Jan. 30, 2015.

Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.

Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-
pseudonode-nickname-02.txt’, May 15, 2012.

13/092,873, filed Apr. 22, 2011,

13/092,877, filed Apr. 22, 2011,

13/184,526, filed Jul. 16, 2011,
13/351,513, filed Jan. 17, 2012,

13/533,843, filed Jun. 26, 2012,

13/669,357, filed Nov. 5, 2012,

US 9,450,870 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Abawajy J. “An Approach to Support a Single Service Provider
Address Image for Wide Area Networks Environment” Centre for
Parallel and Distributed Computing, School of Computer Science
Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752,
filed Apr. 22, 2011.

Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using
BGP for Auto-Discovery and Signaling” Jan. 2007.

Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011,
dated Feb. 23, 2015.

Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011,
dated Jan. 29, 2015.

Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011,
dated Jan. 26, 2015.

Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011,
dated Mar. 13, 2015.

Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011,
dated Feb. 27, 2015.

Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012,
dated Mar. 12, 2015.

Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013,
dated Mar. 13, 2015.

Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014,
dated Apr. 13, 2015.

Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.

Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed
Feb. 11, 2014.

Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed
Nov. 3, 2011.

Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed
Jan. 17, 2012.

Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed
Oct. 19, 2012.

Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed
Oct. 19, 2012.

Office Action Dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed
May 8, 2013.

Mabhalingam “VXLAN: A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22,
Sections 1, 4 and 4.1.

Siamak Azodolmolky et al. “Cloud computing networking: Chal-
lenges and opportunities for innovations”, IEEE Communications
Magazine, vol. 51, No. 7, Jul. 1, 2013.

Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed
Aug. 29, 2014.

Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed
Aug. 29, 2014.

Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed
Sep. 16, 2014.

Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed
Feb. 25, 2013.

Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed
Jan. 15, 2014.

Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed
Jan. 9, 2014.

Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed
Dec. 19, 2014.

Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed
Oct. 19, 2012.

Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed
Feb. 11, 2014.

Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed
Mar. 17, 2014.

Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed
Jan. 6, 2012.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 9 US 9,450,870 B2

i ==

CONTROLLER

/100

FIG. 1A

112

U.S. Patent Sep. 20, 2016 Sheet 2 of 9 US 9,450,870 B2

3 ©
(o] ~ o
‘c_> ~
B8\ 8| 5
S 4 0 I
— 8 %| 5 ;m
IG0== Sy -
== o
LL
L
338 || 2z
WL~

US 9,450,870 B2

Sheet 3 of 9

Sep. 20, 2016

U.S. Patent

09k —-_

€ 'Old

(61 ALIMOINd) 1-80Z 31NN

(€2 ALIMOINd) 90Z 31NN

(61 ALIMOIMd) Z-80Z 31NN

(1€ ALIMOINd) ¥0Z 31NN

(01 ALIMOINd) 20Z 31Ny

(61 ALIMOINd) €£-80Z I1NY

¢ 'Old

€-80¢ 371Ny _ 1S 14OdNI _

¢-80¢ 31Ny _ 95l L4Od"NI _

1-802 3TN _ GGl L4O0d-NI _

7

61 961 140d-1n0 |+ | \— 0z 31Ny [_.woan | 22 | w000 | YEC
€z gl 1MOd-LN0 | o 90z 31Ny [_osrwwodni [z1 | eooo [€5C
T 95L 1MOd-LN0 | o poz 3INY [2ot iodNi [¥ | zooo [¢SC
0l IS} 1¥O4-LN0 | o 20z 31Ny [ssrwiodni][sv | rooo [Se
NP N N g W
%4 9le 1474 YAYA 0Lz
ALIMORId NOILOY V14 Piz STINY MO QI MOT4 XIANI
430 MO14
OIdaANTO

US 9,450,870 B2

Sheet 4 of 9

Sep. 20, 2016

U.S. Patent

Vv 'Old
4 167 NIVHO
1¥0d-43d
\Jvvarmons H ver aimora ezv amons J{ 287 1od
96 NIVHO
140d-43d
\Jeramon §rerarmors H zzv aimora | eer 10a
G617 NIVHO
1¥0d-43d
\ €7 AIMOT4 H 727 QIMOT4 H 27 QIMOTH H 927 QIMOT4 H 98 1¥Od
8e ALIMORId 857 NOILINI43a 8.t QI MO4
127 ALRIORId 167 NOILINI43Q Ly QI MOTH
2y ALIMORId 957 NOILINI43a 9.y QI MO
L1y ALRIORId 567 NOILINI43a G QI MOT4
607 ALIMORId 767 NOILINI43Q pLy QI MOT4
807 ALIMORId €57 NOILINI43a £y Ol MOT4
$0y ALIHORId 257 NOILINI43a 2l QI MO4
£07 ALIMORId 1$% NOILINIF3Q 1Ly QI MO
057~
00t
_ HOLIMS

US 9,450,870 B2

Sheet 5 of 9

Sep. 20, 2016

U.S. Patent

arv ol
60v ALIOI 76t NOILINIF3Q pLt QI MOT4
. |wvamord reramors Heramona H ey 1od
N6 NIvHO
| .. 140d-43d
zvaimotd H vevaimotd H zvamona H o 9gy 1od
o6y NivHo
L1H0d-¥3d
v amod H vy amotd H szvaimora Hovarmora - ssv rvod
667 NIVHO
L[40d-¥3d

U.S. Patent

Sep. 20, 2016 Sheet 6 of 9

START

INITIATE FLOW ID GENERATOR
SEED
502

IDENTIFY SOFTWARE-DEFINABLE
PORTS
504

CREATE PORT CHAIN FOR
RESPECTIVE IDENTIFIED PORT
506

CREATE FLOW TABLE FOR
STORING FLOW DEFINITION
508

RETURN

FIG. 5A

US 9,450,870 B2

U.S. Patent

Sep. 20, 2016

START

RECEIVE FLOW DEFINITION FROM
CONTROLLER
552

!

GENERATE FLOW ID
554

!

GENERATE HASH VALUE USING
FLOW ID
556

STORE FLOW DEFINITION IN FLOW
TABLE ENTRY CORRESPONDING
TOFLOW ID
958

Sheet 7 of 9

GENERIC
DEFINITION?
962

INSERT FLOW ID TO PER-PORT
CHAINS ASSOCIATED WITH ALL
SOFTWARE-DEFINABLE PORTS IN
SORTED ORDER
564

Y

EXPAND GENERIC FLOW
DEFINITION TO MULTIPLE PORT-
SPECIFIC FLOW RULES, STORE

NEW RULES IN CAM, AND REWRITE
ALL AFFECTED RULES IN CAM
565

IDENTIFY PORT ASSOCIATED WITH
FLOW DEFINITION
566

FIG. 5B

INSERT FLOW ID TO PER-PORT
CHAIN ASSOCIATED WITH
IDENTIFIED PORT IN SORTED
ORDER
568

y

WRITE FLOW RULE TO CAM AND
REWRITE ALL AFFECTED RULES
FOR THE CORRESPONDING PORT
569

RETURN

US 9,450,870 B2

U.S. Patent

Sep. 20, 2016

START

RECEIVE UPDATE TO FLOW
DEFINITION FROM CONTROLLER
602

Y

IDENTIFY PORT(S) ASSOCIATED
WITH FLOW DEFINITION
604

v

IDENTIFY FLOW ID ASSOCIATED
WITH FLOW DEFINITION
606

Y

LOCATE LINKED-LIST NODE(S)
COMPRISING FLOW ID IN PER-
PORT CHAIN(S) ASSOCIATED WITH
IDENTIFIED PORT(S)

608

Sheet 8 of 9

DELETE

UPDATE TYPE?
612

MODIFY

MODIFY IDENTIFIED FLOW TABLE
ENTRY
614

PRIORITY
MODIFIED?
616

NO

RE-SORT CORRESPONDING PER-
PORT CHAIN(S) BASED ON
PRIORITY
622

L]

REWRITE AFFECTED RULES IN
CAM
624

' >

REMOVE FLOW TABLE ENTRY,
REMOVE FLOW RULE IN CAM, AND
REWRITE AFFECTED FLOW RULES

IN CAM
632

y

FIG. 6

REMOVE IDENTIFIED LINKED-LIST
NODE(S) FROM RESPECTIVE PER-
PORT CHAIN
634

RETURN

US 9,450,870 B2

U.S. Patent

Sep. 20, 2016 Sheet 9 of 9
SWITCH 700
FLOW TABLE
MANAGEMENT STORAGE
MODULE 750
760
4 Y PER-PORTCHAN)
FLOW DEFINITION MAFA@%E'\LAEENT
MANAGEMENT 0
MODULE \ /
730
(" HASHMODULE)
L 72I1
ASSOCIATION (' FLOW IDENTIFIER |
MODULE VODULE
732 0
_ /
]]
PACKET T
PROCESSOR [i]
; 710 ; :

v oy

L

\
v

v

COMMUNICATION PORTS 702

FIG. 7

US 9,450,870 B2

US 9,450,870 B2

1
SYSTEM AND METHOD FOR FLOW
MANAGEMENT IN SOFTWARE-DEFINED
NETWORKS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/558,332, titled “Per Port Chain for
OpenFlow Generic Mode Flows Database,” by inventors
Kashyap Tavarekere Ananthapadmanabha, Vivek Agarwal,
and Eswara S. P. Chinthalapati, filed Nov. 10, 2011, the
disclosure of which is incorporated by reference herein.

BACKGROUND

1. Field

The present disclosure relates to network management.
More specifically, the present disclosure relates to a method
and system for efficient management of flow definitions in a
software-defined network.

2. Related Art

The exponential growth of the Internet has made it a
popular delivery medium for heterogeneous data flows.
Such heterogeneity has caused an increasing demand for
bandwidth. As a result, equipment vendors race to build
larger and faster switches with versatile capabilities, such as
defining data flows using software, to move more traffic
efficiently. However, the complexity of a switch cannot grow
infinitely. It is limited by physical space, power consump-
tion, and design complexity, to name a few factors. Further-
more, switches with higher and versatile capability are
usually more complex and expensive.

Software-defined flow is a new paradigm in data com-
munication networks. Any network supporting software-
defined flows can be referred to as software-defined net-
work. An example of a software-defined network can be an
OpenFlow network, wherein a network administrator can
configure how a switch behave based on data flows that can
be defined across different layers of network protocols. A
software-defined network separates the intelligence needed
for controlling individual network devices (e.g., routers and
switches) and offloads the control mechanism to a remote
controller device (often a stand-alone server or end device).
Therefore, a software-defined network provides complete
control and flexibility in managing data flow in the network.

While support for software-defined flows brings many
desirable features to networks, some issues remain unsolved
in management of flow definitions. For example, because
software-defined networks redefine traditional data flow
management, coexistence of software-defined network with
current network architecture can be challenging.

SUMMARY

One embodiment of the present invention provides a
system for facilitating flow definition management in a
switch. During operation, the system identifies a generic
flow definition which specifies a flow that is not specific to
any input port of a switch. The system further stores in a
flow lookup data structure one or more port-specific flow
rules based on the generic flow definition, wherein each
port-specific flow rule corresponds to a respective port
capable of processing data flows.

In a variation on this embodiment, the system includes a
content addressable memory (CAM), wherein the flow
lookup data structure is stored in the CAM.

10

15

20

25

30

35

40

45

50

55

60

65

2

In a variation on this embodiment, the system includes a
flow table configurable to store the generic flow definition
with a flag indicating that the generic flow definition is not
specific to any input port.

In a variation on this embodiment, the switch is an
OpenFlow-capable switch.

In a variation on this embodiment, the system maintains
a per-port linked list for a respective port capable of pro-
cessing data flows. A node in the linked list indicates a flow
identifier for a flow definition applicable to the port. Further,
the nodes in the linked list are sorted in the order of priority
of the corresponding flow definitions.

In a further variation, the system stores in a flow table one
or more flow definitions with corresponding flow
identifier(s).

In a further variation, a respective entry in the flow table
stores a flow definition. In addition, the system computes a
hash value based on the flow identifier for the flow defini-
tion, and uses the hash value as an index to the entry.

In a further variation, the system updates a flow definition.
In doing so, the system traverses a per-port linked list for a
port associated with the flow definition to be updated to
locate a flow identifier for the flow definition to be updated.
In addition, the system determines one or more flow iden-
tifiers whose priority is lower than the located flow identifier.
The system then rewrites the flow rules associated with the
determined flow identifiers in the flow lookup data structure,
thereby preserving the priority order of the flow rules for the
port after the update.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an exemplary software-defined net-
work, in accordance with an embodiment of the present
invention.

FIG. 1B illustrates an exemplary switch in a software-
defined network, in accordance with an embodiment of the
present invention.

FIG. 2 illustrates an exemplary flow table with per-port
expansion of generic flow definition of a software-defined
network, in accordance with an embodiment of the present
invention.

FIG. 3 illustrates how the flow rules in FIG. 2 can be
stored in a CAM, in accordance with an embodiment of the
present invention.

FIG. 4A illustrates an exemplary port chain for flow
definitions of a software-defined network, in accordance
with an embodiment of the present invention.

FIG. 4B illustrates a generic flow definition in relation to
per-port chains, in accordance with an embodiment of the
present invention.

FIG. 5A presents a flowchart illustrating the process of
initiating per-port chain and a corresponding flow table, in
accordance with an embodiment of the present invention.

FIG. 5B presents a flowchart illustrating the process
inserting a new flow definition using a flow ID, in accor-
dance with an embodiment of the present invention.

FIG. 6 presents a flowchart illustrating the process of a
switch in a software-defined network updating a flow defi-
nition using a flow identifier, in accordance with an embodi-
ment of the present invention.

FIG. 7 illustrates an exemplary switch in a software-
defined network, in accordance with an embodiment of the
present invention.

US 9,450,870 B2

3

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
claims.

Overview

In embodiments of the present invention, the problem of
facilitating coexistence of conventional ports and ports that
support software-defined flows in a switch and improving
the efficiency of updating flow definitions in a software-
defined network is solved by (1) converting a non-port-
specific (generic) flow rule to one or more port-specific flow
rules; and (2) providing per-port linked-lists of pointers to
flow rules, thereby allowing updating flow definitions on a
per-port basis.

In general, it is desirable to partition the ports of a switch
in a software-defined network into two logical groups. One
logical group supports traditional packet forwarding and the
other group supports forwarding based on software-defined
flows. Ideally, the switch should preclude software-based
flow definitions (such as those defined using OpenFlow) to
the ports reserved for traditional packet forwarding. How-
ever, with the existing technologies, a flow definition that
does not specify an input port is usually applied to all the
ports of a switch, regardless of whether it is configured for
traditional packet forwarding or for software-defined flow
forwarding. Hence, erroneous forwarding decision might
occur with such non-port-specific (also referred to as
“generic”) flow definitions.

A second problem faced by the existing software-defined
network architecture is that the flow definitions for the entire
switch are maintained in a single linked list, typically in the
order of priority. When the network administrator needs to
update a rule definition (i.e., add, delete, or change), the
switch needs to traverse the entire linked list to identify the
location for the update. Also, since the flow definitions are
typically stored in a content addressable memory (CAM),
the physical storage location for each flow definition corre-
sponds to the definition’s priority. Hence, if a flow defini-
tion’s priority changes (or if it is being added or deleted), all
the flow definitions with lower priorities need to be re-
written in the CAM, so that their new storage locations
reflect the change in the priority order. This update mecha-
nism is inefficient, especially as the number of flow defini-
tions grows big.

The solutions described herein to the above problems are
two-fold. First, for a generic, non-port-specific flow defini-
tion, the system converts this generic flow definition into one
or more port-specific rules for all the ports configured to
perform software-defined flow forwarding. As a result, ports
reserved for conventional packet forwarding are no longer
subject to the software-based flow definitions. Second, for
each port configured to perform software-defined flow for-
warding, a per-port, priority-ordered linked list stores point-
ers to flow definitions only associated with that port. Hence,
when a flow definition is added, deleted, or modified, the

10

15

20

25

30

35

40

45

50

55

60

65

4

system only needs to traverse the per-port linked list to
locate the flow definitions that need to be changed in the
CAM. As a result, the amount of overhead associated with
flow definition updates can be significantly reduced.

In this disclosure, the term “software-defined network”
refers to a network that facilitates control over a respective
data flow by specifying the action associated with the flow
in a flow definition. A controller, which can be a server,
coupled to the software-defined network provides a respec-
tive switch in the software-defined network with the flow
definitions. A flow definition can include a priority value, a
rule that specifies a flow, and an action (e.g., a forwarding
port or “drop”) for the flow. The rule of a flow definition can
specify, for example, any value combination in the ten-tuple
of {in-port, VLAN ID, MAC SA, MAC DA, Ethertype, IP
SA, IP DA, 1P Protocol, TCP source port, TCP destination
port}. Other packet header fields can also be included in the
flow rule. Depending on its specificity, a flow rule can
correspond to one or more flows in the network. Upon
matching a respective packet to a rule, the switch in the
software-defined network takes the action included in the
corresponding flow definition. An example of a software-
defined network includes, but is not limited to, OpenFlow, as
described in Open Networking Foundation (ONF) specifi-
cation “OpenFlow Switch Specification,” available at http://
www.openflow.org/documents/openflow-spec-v1.1.0.pdf,
which is incorporated by reference herein.

In this disclosure, a switch in a software-defined network
and capable of processing software-defined flows is referred
to as a “software-definable” switch. Such a software-defin-
able switch can include both ports that process software-
defined flows and ports reserved for convention packet
forwarding (e.g., layer-2/Ethernet switching, or IP routing),
which are referred to as “regular ports” in this disclosure. A
flow definition typically includes one or more software-
definable in-ports to which the definition is applicable. Any
flow arriving via any port can potentially be a match for the
generic flow definition.

In some embodiments, the software-defined network is a
fabric switch and a respective switch in the software-defined
network is a member switch of the fabric switch. The fabric
switch can be an Ethernet fabric switch. In an Ethernet fabric
switch, any number of switches coupled in an arbitrary
topology may logically operate as a single switch. Any new
switch may join or leave the fabric switch in “plug-and-
play” mode without any manual configuration. A fabric
switch appears as a single logical switch to the end device.

Although the present disclosure is presented using
examples based on OpenFlow, embodiments of the present
invention are not limited to networks defined OpenFlow or
a particular Open System Interconnection Reference Model
(OSI reference model) layer. In this disclosure, the term
“software-defined network™ is used in a generic sense, and
can refer to any network which facilitates switching of data
flows based on software-defined rules. The term “flow
definition” is also used in a generic sense, and can refer to
any rule which identifies a frame belonging to a specific flow
and/or dictates how a switch should process the frame.

The term “end device” can refer a host, a conventional
layer-2 switch, or any other type of network device. Addi-
tionally, an end device can be coupled to other switches or
hosts further away from a network. An end device can also
be an aggregation point for a number of network devices to
enter the network.

The term “frame” refers to a group of bits that can be
transported together across a network. “Frame” should not
be interpreted as limiting embodiments of the present inven-

US 9,450,870 B2

5

tion to layer-2 networks. “Frame” can be replaced by other
terminologies referring to a group of bits, such as “packet,”
“cell,” or “datagram.”

The term “switch” is used in a generic sense, and it can
refer to any standalone or fabric switch operating in any
network layer. “Switch” should not be interpreted as limiting
embodiments of the present invention to layer-2 networks.
Any device that can forward traffic to an end device can be
referred to as a “switch.” Examples of a “switch” include,
but are not limited to, a layer-2 switch, a layer-3 router, a
TRILL RBridge, an FC router, or an FC switch.

The term “Ethernet fabric switch” refers to a number of
interconnected physical switches which form a single, scal-
able logical switch. In a fabric switch, any number of
switches can be connected in an arbitrary topology, and the
entire group of switches functions together as one single,
logical switch. This feature makes it possible to use many
smaller, inexpensive switches to construct a large fabric
switch, which can be viewed as a single logical switch
externally.

Network and Switch Architecture

As mentioned above, in a switch in a software-defined
network, a generic flow definition could be applied to a
software-definable port or a regular port. As a result, the
isolation between software-definable ports and regular ports
is compromised, and the switch can undesirably forward
regular traffic based on a generic flow definition. Typically,
upon receiving a flow definition from a controller, a con-
ventional switch in software-defined network uses a single
data structure (such as a master linked-list) to store all flow
definitions for all ports. In hardware (e.g., CAM), the
corresponding flow rules are typically stored based on the
respective priorities of the flow definitions. When the con-
troller sends instruction to the switch to add a new flow
definition or update (i.e., delete or modify) an existing flow
definition, the switch adds, deletes, or modifies the corre-
sponding flow definition in the master linked-list. However,
to delete or modify, the switch searches the entire master
linked-list to find the flow definition. Moreover, because the
flow rules are also stored in the CAM based on the respec-
tive priorities (since the system uses the flow rules stored in
the CAM for real-time packet processing), to add or delete
a new flow definition, the switch searches the entire list to
find the appropriate position for the flow definition and has
to shift all the entries in the CAM with priorities lower than
the added or deleted flow definition. Furthermore, if the
priority of an existing flow definition changes, the same
location shift has to be done for all affected entries in the
CAM. As a result, the switch incurs significant overhead of
rewriting when one needs to modify a flow definition,
although the modified flow definition might be related to
only a subset of all the software-definable ports.

To solve this problem, a switch in a software-defined
network associates a generic flow definition with all the
software-definable ports in the switch and storing multiple
port-specific flow rules (corresponding to each software-
definable port) in the CAM. Upon receiving a generic flow
definition from the controller, the switch identifies the
software-definable ports in the switch and creates a flow rule
for a respective software-definable port by inserting the
corresponding port index in the “in-port” field of the flow
rule. In this way, the switch expands the generic flow
definition to multiple port-specific flow rules corresponding
to the software-definable ports. This expansion ensures
isolation of regular ports from software-definable ports.
Consequently, the switch applies a flow definition only to
software-defined ports.

20

30

35

40

45

6

The switch also creates a per-port linked list (also referred
to as “per-port chain”), which is a list of pointers or
identifiers corresponding to flow definitions for a respective
software-definable port (i.e., the flow definitions which have
the port as in-port). In some embodiments, the switch creates
a flow identifier (or a flow ID) for each flow definition. The
switch stores the flow definition and its corresponding flow
identifier in a table (referred to as “flow table” in this
disclosure). The switch stores the flow identifiers of the flow
definitions for a given port in the corresponding per-port
chain. In other words, each link in a per-port chain is a flow
ID. In addition, a respective per-port chain is ordered based
on each link’s priority (i.e., the corresponding flow defini-
tion’s priority). Hence, when a flow definition needs to be
updated, the switch can traverse the per-port chain for the
associated port, identify the flow IDs along the chain whose
priority is lower than the flow definition being updated, and
only rewrite the flow rules in the CAM corresponding to
those affected flow IDs. As a result, the switch can avoid
unnecessarily rewriting entries in the CAM that are not
related to the affected port, and hence avoid unnecessary
down time for those unaffected ports. Furthermore, because
the flow definition is stored in the flow table, and each port
only maintains a per-port chain which includes only flow
1Ds, if a flow definition is associated with a plurality of
in-ports (e.g., a generic flow definition), the switch can just
store the generic definition once with a set “generic-flow
flag” in the flow table, and use the same flow ID in multiple
per-port chains.

In some embodiments, the flow table is a hash table and
the flow ID can be used as hash keys to generate a hash
value, which is then used as an index to the flow table to map
to a flow definition. In addition, since the per-port chain is
ordered based on the flow definitions’ priority, the position
of'each link in the chain inherently carries with it the priority
information. In addition, for the flow rules corresponding to
the links in a per-port chain, the storage locations of these
flow rules in the CAM are also ordered in the same priority
order. In this way, when the switch performs a CAM lookup
for an incoming packet, the lookup result returned by the
CAM automatically reflects the matching flow rule with the
highest priority. Note that the flow rules stored in the CAM
are all port-specific, assuming that a generic flow definition
has been converted to multiple port-specific flow rules for
the individual ports. Further, depending on the implemen-
tation, a larger or smaller numeric priority value may
correspond to higher or lower priority. In one embodiment,
the switch does not store the expanded generic flow defini-
tions (i.e., multiple port-specific flow definitions, each for a
different software-definable port) in the flow table. Instead,
the switch stores the generic flow definition only once in the
flow table, with a set generic-flow flag (to distinguish the
generic flow definition from other port-specific definitions),
and inserts the corresponding flow ID into a respective port
chain.

FIG. 1A illustrates an exemplary software-defined net-
work, in accordance with an embodiment of the present
invention. A heterogeneous software-defined network 100
includes regular switches 101 and 104. Also included are
switches 102, 103, 105, and 106, which are capable of
processing software-defined flows. Switches 102, 103, 105,
and 106 are software-definable switches. Controller 120 is
logically coupled to a respective software-definable switch
in network 100. Note that controller 120 can be physically
coupled to only a subset of the switches. In this example,
controller 120 is coupled to switches 103 and 106 via

US 9,450,870 B2

7
physical links 122 and 124, respectively. End device 112 is
coupled to network 100 via software-definable switch 105.

Software-definable switch 102 includes one or more soft-
ware-definable ports. Switch 102 uses its software-definable
ports to couple other software-definable switches 103, 105,
and 106. Similarly, software-definable switches 103, 105,
and 106 also use their respective software-definable ports to
couple other software-definable switches. Switch 102 also
includes regular ports coupled to regular switches 101 and
104. During operation, controller 120 sends flow definitions
to switches 102, 103, 104, and 105. Switch 102 receives a
flow definition and checks whether the flow definition is a
generic flow definition. If so, any flow arriving to switch 102
via any port can potentially be a match for the generic flow
definition.

To ensure isolation between software-definable ports and
regular ports, and avoid forwarding regular traffic based on
the generic flow definition, in switch 102 generates multiple
port-specific flow rules based on the generic flow definition,
one for each software-definable port. In some embodiments,
switch 102 creates these new flow rules by adding a respec-
tive software-definable port as the in-port to the generic flow
definition. Switch 102 then inserts the generic flow defini-
tion in a local flow table with a set generic-flow flag, and
writes the generated port-specific flow rules to its local
CAM. Similarly, upon receiving the generic flow definition,
switches 103, 105, and 106 also insert the generic flow
definition with the generic-flow flag in their respective local
flow tables and stores the generated port-specific flow rules
in their respective CAM. Switches 102, 103, 105, and 106,
thus, always apply a flow definition to flows coming from
software-definable ports, and avoid applying the flow defi-
nition to traffic received from regular ports.

In some embodiments, a respective software-definable
switch in network 100 creates a per-port chain of flow
definitions for a respective software-definable port. For
example, software-definable switch 103 creates a per-port
chain for the software-definable ports which couple switches
102, 105, and 106. Switch 103 sorts the per-port chain based
on the priority of the flow definitions. When switch 103
receives a flow definition from controller 120, switch 103
creates a flow ID for the flow definition and stores the flow
definition and its corresponding flow ID in a flow table. In
addition, switch 103 stores the flow IDs of the flow defini-
tions for the port in the corresponding per-port chain. The
flow table in switch 103 can be a hash table where flow IDs
are hash keys for locating the corresponding flow definitions
in the flow table. Similarly, software-definable switches 102,
105, and 106 also store the flow definitions in a hash table
and the corresponding flow IDs in local per-port chains.

FIG. 1B illustrates an exemplary switch in a software-
defined network, in accordance with an embodiment of the
present invention. In this example, software-definable
switch 105 is coupled to other software-definable switches
102, 103, and 106 via software-definable ports 155, 156, and
157, respectively. Switch 105 also includes regular ports
151, 152, and 153, which are not software-definable and
couple regular switches 101 and 104, and end device 112,
respectively. During operation, controller 120 sends a flow
definition to switch 105. If the flow definition is a generic
flow definition, switch 105 expands the generic flow defi-
nition by creating a port-specific flow rule for each of ports
155, 156, and 157 based on the generic flow definition.
Switch 105 then stores the generic flow definition in flow
table 160 with a set generic-flow flag and stores the gener-

10

15

20

25

30

35

40

45

50

55

60

65

8

ated per-port flow rules in a CAM 161. Switch 105, thus,
only applies the generic flow definition to flows coming via
ports 155, 156, and 157.

Furthermore, switch 105 also creates per-port chains 165,
166, and 167 for ports 155, 156, and 157, respectively.
Per-port chains 165, 166, and 167 are sorted based on the
priority of the flow definitions associated with the respective
port. When switch 105 receives a flow definition (either
generic or port-specific) from controller 120, switch 105
creates a flow ID for the flow definition. Switch 105 stores
the flow definition and the corresponding flow ID in flow
table 160. Switch 105 then inserts the flow ID in the
corresponding per-port chain in sorted order. Suppose that
the flow definition is for port 155. Switch 105 stores the flow
ID in per-port chain 165. If the flow definition is a generic
flow definition, switch 105 stores the flow ID in per-port
chains 165, 166, and 167. In this way, switch 105 can store
a generic flow definition only once.

During operation, switch 105 receives a frame from
switch 102 via port 155. Switch 105 extracts the frame’s
header information and performs a lookup in CAM 161.
CAM 161, which stores port-specific flow rules, returns a
result that indicates a matching flow definition with the
highest priority. Note that, since a generic flow definition is
stored as multiple port-specific flow rules in CAM 161, the
generic flow definition is automatically included in the CAM
lookup. Switch 105 identifies and performs the action speci-
fied in the matching flow definition.

Generic Flow Definition Expansion

In the example in FIG. 1B, flow table 160 can include a
plurality of entries corresponding to a plurality of flow
definitions. FIG. 2 illustrates an exemplary flow table with
per-port expansion of generic flow definition of a software-
defined network, in accordance with an embodiment of the
present invention. In this example, each entry in flow table
160 of switch 105 includes the following fields: an index
field 210, a flow ID field 212, a flow rule field 214, a generic
flow definition flag field 214, an action field 216, and a
priority field 218. Additional fields carrying other flow-
related information can also be included in flow table 160.

Index field 210 stores the index to each entry (i.e., a flow
definition). In one embodiment, the index to a given entry is
the hash value of the flow ID for the corresponding flow
definition. Flow ID field 212 stores the flow ID for a given
entry. Flow rule field 214 stores the specific header field
values which need to be matched to identifying a particular
flow. A flow rule can include one or more of: an input port
(in-port), a layer-2 source address, a layer-2 destination
address, a layer-2 frame type, a VLAN ID, a layer-3 source
address, a layer-3 destination address, a layer-4 (e.g., trans-
port layer) protocol, a layer-4 source address, and a layer-4
destination address.

Generic flow definition flag field 214 stores a one-bit flag
for each entry to indicate whether the flow definition is a
generic definition, which applies to all the software-defin-
able ports. Action field 216 stores the action to be taken for
a given flow, such as an output port (“out-port”) or “drop.”
In one embodiment, action field 216 may store a pointer to
an “action table” (not shown) that contains information
describing more complex operations for a flow. Priority field
218 stores the priority value associated with each flow
definition.

In this example, flow definitions 251, 252, and 253 are
respectively associated with to input ports 155, 157, and
156, as specified by the “in-port” field of their respective
flow rules 202, 204, and 206. If a frame’s header fields
match what is specified in rule 202, 204, or 206, the switch

US 9,450,870 B2

9

forwards the frame to port 157, 156, or 155, respectively, as
specified in the action field of each flow definition.

For each non-generic flow definition, as indicated by a “0”
in its generic flow definition flag 214, the corresponding
flow rule is stored in the switch’s CAM for line-speed
lookups. The locations of these rules in the CAM reflect their
priority order, on a per port basis.

Flow table 160 can also include a generic flow definition
254, which does not specify a particular in-port in its
corresponding flow rule 208 (as indicated by the wildcard
character “*”). Generic flow definition 254 specifies in
action field 216 an out-port 156. In one embodiment, switch
105 expands flow rule 208 of generic flow definition 254 by
creating a new port-specific flow rule for each software-
definable port, namely ports 155, 156, and 157. The newly
created rules 208-1, 208-2, and 208-3 each specifies port
155, 156, and 157 as their respective in-port. Switch 105
then stores rules 208-1, 208-2, and 208-3 in its CAM based
on their priority order for each the in-port. Note that the
expanded rules 208-1, 208-2, and 208-3 all inherit the same
priority value (“19”) from generic flow definition 254.
Assume that a greater priority value indicates a higher
priority. Hence, in the CAM, for all the flow rules associated
with in-port 155, rule 208-1 (priority 19) is stored before
rule 202 (priority 10). However, for all the flow rules
associated with in-port 156, rule 208-2 (priority 19) is stored
after rule 206 (priority 23). Similarly, for all the flow rules
associated with in-port 157, rule 208-3 (priority 19) is stored
after rule 204 (priority 37).

FIG. 3 illustrates how the flow rules in FIG. 2 can be
stored in a CAM, in accordance with an embodiment of the
present invention. In this example, a lower storage position
in the CAM corresponds to a higher priority of the flow rule.
Note that the entire set of flow rules are not stored in a strict
priority order. However, for all the rules associated with a
given in-port, the storage locations of these rules preserve
their priority order. For example, rule 208-1 is stored below
rule 206, although rule 208-1’s priority is lower than rule
206’s priority. Nevertheless, rule 208-1 and rule 206 are
associated with different in-ports, hence their relative loca-
tions in the CAM do not affect the lookup (since a frame can
arrive from one in-port and hence can only match one of
these two rules). However, for rules associated with the
same in-port, for example, rule 208-1 and rule 202, their
relative positions in the CAM preserve their priority order
(i.e., rule 208-1 is stored below rule 202, since rule 208-1
has a higher priority). The priority order of the rules for each
in-port is maintained by a per-port chain, as described below.
Per-Port Chain

As mentioned earlier, in conventional switches, all the
flow rules are stored in the CAM based on a switch-wide
priority order. Such configuration results in significant over-
head when a flow rule is added, deleted, or changes its
priority, because all the rules in the CAM with priority lower
than the changed rule need to be rewritten to new locations.
Embodiments of the present invention mitigate this problem
by using a per-port chain, which is a port-specific linked list
of flow IDs sorted in their priority order. These per-port
chains keep track of the priority order of all the flow rules
for a particular port. When a flow rule for a port needs to be
changed, only those rules with lower priority for that port, as
indicated by the per-port chain, need to be rewritten in the
CAM.

FIG. 4A illustrates an exemplary per-port chain for flow
definitions of a software-defined network, in accordance
with an embodiment of the present invention. In this
example, a flow table 450 in switch 400 includes flow

5

10

15

20

25

30

35

40

45

50

55

60

65

10
definitions 451, 452, 453, 454, 455, 456, 457, and 458, with
flow 1D 471, 472, 473, 474, 475, 476, 477, and 478, and
priority values 403, 404, 408, 409, 411, 412, 421, and 438,
respectively. Note that not all fields of flow table 450 are
shown.

Switch 400 creates per-port chains 495, 496, and 497 for
local software-definable ports 485, 486, and 487, respec-
tively. Per-port chain 495 includes flow IDs 476, 475, 474,
and 473, sorted based on the priority values of the corre-
sponding flow definitions 456, 455, 454, and 453, respec-
tively. Similarly, per-port chain 496 includes flow IDs 477,
474, and 472, sorted based on the priority values of the
corresponding flow definitions 457, 454, and 452, respec-
tively. Per-port chain 497 includes flow IDs 478, 474, and
471, sorted based on the priority values of the corresponding
flow definitions 458, 454, and 451, respectively.

During operation, switch 400 receives an update to a flow
definition (say flow definition 455) which changes its pri-
ority. Switch 400 first searches flow table 450 to identify
flow definition 455’s flow 1D, which is flow ID 475. Switch
400 then identifies that flow definition 455 is associated with
port 485. In response, switch 400 traverses per-port chain
495 to identify the position of flow 1D 475, as well as the
flow IDs affected by the update. After the update, per-port
chain 495 would have a new priority order. Switch 400 then
rewrites in the CAM all the flow rules corresponding to the
affected flow IDs. Note that the CAM rewriting only affects
the rules associated with port 485. Hence, during such rule
updates, the CAM can remain function for the unaffected
ports. The service disruption can therefore be significantly
reduced.

FIG. 4B illustrates a generic flow definition in relation to
per-port chains, in accordance with an embodiment of the
present invention. Assuming flow definition 454 is a generic
flow definition, the corresponding flow ID 474 is included in
per-port chains 495, 496, and 497. Note that, as described
previously in conjunction with FIGS. 2 and 3, flow defini-
tion 454 corresponds to multiple port-specific flow rules
stored in the CAM. When the switch needs to update flow
definition 454, the system first determines that flow defini-
tion 454 is a generic definition. The system then traverses the
per-port chain for every port to identify the affected flow
1Ds, and rewrite, as necessary, all the affected flow rules in
the CAM.

In the example in FIG. 1B, switch 105 first initiates
per-port chains 165, 166, and 167 for the flow definitions in
flow table 160. Switch 105 then performs the necessary
operations (e.g., adding, deleting, and updating) for a flow
definition using both flow table 160 and per-port chains 165,
166, and 167. FIG. 5A presents a flowchart illustrating the
process of initiating per-port chain and a corresponding flow
table, in accordance with an embodiment of the present
invention. During operation, the switch first initiates a seed
for a flow ID generator (operation 502). Examples of a flow
ID generator include, but are not limited to, a random
number generator and a sequential number generator.

The switch then identifies the software-definable ports in
the switch (operation 504). In some embodiments, a network
administrator allocates a subset of the ports of the switch as
the software-definable ports. For example, the network
administrator can enable OpenFlow for the subset of the
ports to allocate the ports as software definable. The switch
then creates a per-port chain for a respective software-
definable port (operation 506). A per-port chain can be a
linked list or a doubly-linked list. The switch then creates a
flow table for storing flow definitions (operation 508). Note
that the switch creates a separate entry in the flow table for

US 9,450,870 B2

11

a respective flow definition. In some embodiments, the flow
table is a hash table and a flow ID can be used as a hash key.

FIG. 5B presents a flowchart illustrating the process
inserting a new flow definition using a flow ID, in accor-
dance with an embodiment of the present invention. During
operation, the switch receives a flow definition from a
controller (operation 552). The switch then generates a flow
1D (operation 554). This flow ID can be local to the switch.
For the same flow definition, a different switch can have a
different local flow ID. The switch applies the flow ID as a
key to a hash function to generate a hash value (operation
556). The switch then stores the flow definition with the flow
ID as an entry in a flow table entry (operation 558). The hash
value is the index to this entry.

Next, the switch checks whether the flow definition is a
generic flow definition (operation 562). If so, the switch
inserts the flow ID into the per-port chains associated with
all software-definable ports based on the flow definition’s
priority (operation 564). In addition, the switch expands this
generic flow definition to multiple port-specific flow rules.
The switch then stores these new rules in the CAM and
rewrites all the affected rules in the CAM (i.e., rules whose
position is affected by the new rule) (operation 565). If the
flow is not a generic flow definition, the switch identifies the
in-port associated with the flow definition (operation 566).
The switch then inserts the flow ID into the per-port chain
associated with the identified port in the switch based on the
flow definition’s priority (operation 568). Subsequently, the
switch writes the flow rule to the CAM, and rewrites all
affected rules for the corresponding port (operation 569).

FIG. 6 presents a flowchart illustrating the process of
updating a flow definition, in accordance with an embodi-
ment of the present invention. An update to a flow definition
can include a deletion or a modification to the flow defini-
tion. During operation, the switch receives an update to an
existing flow definition from a controller (operation 602). In
response, the switch identifies the port(s) associated with the
flow definition (operation 604). If the flow definition is a
generic flow definition, the flow definition is associated with
all software-definable ports in the switch. The switch further
identifies the flow ID associated with the flow definition by,
for example, searching the flow table (operation 606). The
switch locates the linked-list node(s) comprising the flow ID
in the per-port chain(s) associated with the identified port(s)
(operation 608).

The switch then checks the update type (operation 612).
Ifthe update type is “delete,” the switch removes the located
flow table entry, removes the flow rule from the CAM, and
rewrites the affected flow rules in the CAM (which are
identified after the system traverses the per-port chain in
operation 608) (operation 632). The switch then removes the
linked-list node(s) from a respective per-port chain (opera-
tion 634).

If the operation is “modify,” the switch modifies the
identified flow table entry (operation 614) and checks
whether the priority of the flow definition is modified
(operation 616). If the priority is modified, the switch
re-sorts the corresponding per-port chain(s) based on the
priority values of the flow definitions (operation 622). The
switch then rewrites the affected rules in the CAM (based on
the affected flow IDs identified in operation 608) (operation
624).

In some embodiment, a respective per-port chain is a
double linked list. The switch can store a pointer to a flow
table entry in a corresponding per-port chain. The switch can
obtain the flow definition from a flow table using the flow ID
(e.g., hashing the flow ID) and directly delete the flow

10

15

20

25

30

35

40

45

50

55

60

65

12

definition in the flow table entry using the pointer stored in
a respective per-port chain. Since a respective per-port chain
is double linked list, it is easier to maintain the pointer and
delete a flow table entry from the per-port chain while
maintaining the sanity of the per-port chain.

Exemplary Switch

FIG. 7 illustrates an exemplary switch in a software-
defined network, in accordance with an embodiment of the
present invention. In this example, a switch 700 includes a
number of communication ports 702, a flow definition
management module 730, an association module 732, a
packet processor 710, and a storage 750. Packet processor
710 further includes a CAM 711. One or more of commu-
nication ports 702 are software-definable ports. These soft-
ware-definable ports can be OpenFlow enabled. Switch 700
receives software-defined data flow via the software-defined
flows. During operation, flow definition management mod-
ule 730 identifies a generic flow definition. This generic flow
definition can be a new flow definition received from a
controller or already stored in a local flow table. The flow
table can reside in storage 750. Association module 732
associates the generic flow definition with a respective
software-definable port of switch 700 and creates a new flow
definition associated with a respective software-definable
port based on the generic flow definition. In some embodi-
ments, association module 732 can store the new flow
definitions in the flow table.

In some embodiments, switch 700 includes a flow ID
module 720, a hash module 721, a per-port chain manage-
ment module 740, and a flow table management module
760. During operation, flow ID module 720 generates a flow
ID for a flow definition received via one of the communi-
cation ports 702. This flow definition can be associated with
a software-definable port. Per-port chain management mod-
ule 740 creates a per-port chain for a respective software-
definable port. A node of the per-port chain associated with
the software-definable port contains the flow ID. Flow table
management module 760 stores the flow definition and the
flow ID in an entry in the flow table. Hash module 721
calculates a hash value based on the flow ID and uses the
hash value as an index to the entry. Per-port chain manage-
ment module 740 sorts the per-port chain based on the
priority value associated with the flow definition. If the flow
definition is modified (e.g., updated or deleted), per-port
chain management module 740 precludes flow table man-
agement module 760 from sorting the flow definitions which
are not associated with the software-definable port.

Upon receiving a frame via the software-definable port,
packet processor 710 checks whether the frame received
matches with the flow definition. Flow table management
module 760 identifies the flow table entry associated with
the software-definable port using the flow ID of the flow
definition. This flow table can be a hash table and flow table
management module 760 can use the flow ID as a hash key
to find the flow table entry. If switch 700 is equipped with
per-port chain management module 740, when flow defini-
tion management module 730 identifies the generic flow
definition, per-port chain management module 740 inserts a
list node comprising a flow ID of the generic flow into a
respective per-port chain in switch 700.

In some embodiments, switch 700 may maintain a mem-
bership in a fabric switch. Switch 700 maintains a configu-
ration database in storage 750 that maintains the configura-
tion state of a respective switch within the fabric switch.
Switch 700 maintains the state of the fabric switch, which is
used to join other switches. Under such a scenario, commu-
nication ports 702 can include inter-switch communication

US 9,450,870 B2

13

channels for communication within a fabric switch. This
inter-switch communication channel can be implemented
via a regular communication port and based on any open or
proprietary format.

Note that the above-mentioned modules can be imple-
mented in hardware as well as in software. In one embodi-
ment, these modules can be embodied in computer-execut-
able instructions stored in a memory which is coupled to one
or more processors in switch 700. When executed, these
instructions cause the processor(s) to perform the aforemen-
tioned functions.

In summary, embodiments of the present invention pro-
vide a switch and a method for efficient management of flow
definitions in a software-defined network. In one embodi-
ment, the switch includes one or more software-definable
ports, a flow definition management module, and an asso-
ciation module. A software-definable port can receive soft-
ware-defined data flow. During operation, the flow definition
management module identifies a generic flow definition of a
software-defined network. The generic flow definition is not
associated with an incoming port of the switch. The asso-
ciation module associates the generic flow definition with a
respective software-definable port of the switch.

The methods and processes described herein can be
embodied as code and/or data, which can be stored in a
computer-readable non-transitory storage medium. When a
computer system reads and executes the code and/or data
stored on the computer-readable non-transitory storage
medium, the computer system performs the methods and
processes embodied as data structures and code and stored
within the medium.

The methods and processes described herein can be
executed by and/or included in hardware modules or appa-
ratus. These modules or apparatus may include, but are not
limited to, an application-specific integrated circuit (ASIC)
chip, a field-programmable gate array (FPGA), a dedicated
or shared processor that executes a particular software
module or a piece of code at a particular time, and/or other
programmable-logic devices now known or later developed.
When the hardware modules or apparatus are activated, they
perform the methods and processes included within them.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of illustra-
tion and description. They are not intended to be exhaustive
or to limit this disclosure. Accordingly, many modifications
and variations will be apparent to practitioners skilled in the
art. The scope of the present invention is defined by the
appended claims.

What is claimed is:
1. A switch, comprising:
processing circuitry;
one or more switch ports;
a flow definition management apparatus configured to:
identify a generic flow definition which specifies a flow
that is not specific to any input switch port of the
switch; and
convert the generic flow definition to one or more
input-port-specific flow rules, wherein an input-port-
specific flow rule corresponds to one of the switch
ports of the switch; and
a flow lookup data structure configured to store the one or
more input-port-specific flow rules in association with
the corresponding switch port, wherein the correspond-
ing switch port supports processing a dataflow based on
a flow rule.

10

15

20

25

35

40

45

55

60

14

2. The switch of claim 1, further comprising a content
addressable memory (CAM), wherein the flow lookup data
structure is stored in the CAM.

3. The switch of claim 1, wherein the generic flow
definition comprises a flag indicating that the generic flow
definition is not specific to any input port.

4. The switch of claim 1, wherein the switch is an
OpenFlow supported switch.

5. The switch of claim 1, further comprising a per-port
linked list for a respective port with support for processing
a data flow based on a flow rule;

wherein a node in the linked list indicates a flow identifier

for a flow definition applicable to the port; and
wherein the nodes in the linked list are sorted in the order
of priority of the corresponding flow definitions.

6. The switch of claim 1, further comprising a flow table
configured to store in an entry a flow definition in associa-
tion with a flow identifier of the flow definition.

7. The switch of claim 6,

wherein the switch further comprises a hash computation

apparatus configured to compute a hash value based on
the flow identifier of the flow definition; and
wherein the hash value is used as an index to the entry.
8. The switch of claim 1, further comprising a flow
definition updating apparatus configured to update a tflow
definition; and
wherein while updating the flow definition, the flow
definition updating apparatus is configured to:
traverse a per-port linked list for a port associated with
the flow definition to be updated to locate a flow
identifier of the flow definition to be updated;
determine one or more flow identifiers whose priority is
lower than the located flow identifier; and
rewrite the flow rules associated with the determined
flow identifiers in the flow lookup data structure,
thereby preserving the priority order of the flow rules
for the port after the update.
9. A method, comprising:
identifying, by a switch, a generic flow definition which
specifies a flow that is not specific to any input switch
port of the switch, wherein the switch comprises pro-
cessing circuitry and one or more switch ports; and

converting the generic flow definition to one or more
input-port-specific flow rules, wherein an input-port-
specific flow rule corresponds to one of the switch ports
of the switch; and

storing in a flow lookup data structure the one or more

input-port-specific flow rules in association with the
corresponding switch port, wherein the corresponding
switch port supports processing a data flow based on a
flow rule.

10. The method of claim 9, wherein the flow lookup data
structure is stored in a content addressable memory (CAM).

11. The method of claim 9, wherein the generic flow
definition comprises a flag indicating that the generic flow
definition is not specific to any input port.

12. The method of claim 9, wherein the switch is an
OpenFlow supported switch.

13. The method of claim 9, further comprising maintain-
ing a per-port linked list for a respective port with support
for processing a dataflow based on a flow rule;

wherein a node in the linked list indicates a flow identifier

for a flow definition applicable to the port; and
wherein the nodes in the linked list are sorted in the order
of priority of the corresponding flow definitions.

US 9,450,870 B2

15

14. The method of claim 9, further comprising store in an
entry in a flow table a flow definition in association with a
flow identifier of the flow definition.
15. The method of claim 14,
further comprising computing a hash value based on the
flow identifier of the flow definition; and
wherein the hash value is used as an index to the entry.
16. The method of claim 9, further comprising updating a
flow definition by:
traversing a per-port linked list for a port associated with
the flow definition to be updated to locate a flow
identifier of the flow definition to be updated;

determining one or more flow identifiers whose priority is
lower than the located flow identifier; and

rewriting the flow rules associated with the determined

flow identifiers in the flow lookup data structure,
thereby preserving the priority order of the flow rules
for the port after the update.

17. A switch means, comprising:
processing circuitry means;
one or more switch port means;

10

20

16

a flow definition management means for:
identifying a generic flow definition which specifies a
flow that is not specific to any input port of the
switch means; and
converting the generic flow definition to one or more
input-port-specific flow rules, wherein an input-port-
specific flow rule corresponds to one of the switch
port means of the switch means; and
a flow lookup means for storing the one or more input-
port-specific flow rules in association with the corre-
sponding port, wherein the corresponding switch port
means supports processing a data flow based on a flow
rule.
18. The switch means of claim 17, further comprising:
a per-port linked list means for storing flow identifiers of
a respective port with support for processing data
flows.
19. The switch means of claim 17, wherein the generic

flow definition comprises a flag indicating that the generic
flow definition is not specific to any input port.

20. The switch means of claim 17, further comprising a

flow definition updating means for updating a flow defini-
tion.

